
ABSTRACT . Most knowledge-based

system development efforts include

acquiring knowledge from one or

more sources. Difficulties associated

with this knowledge acquisition task

are readily acknowledged by most re-

searchers. While a variety of knowl-

edge acquisition methods have been

reported, little has been done to or-

ganize those different methods and to

suggest how to apply them within a

conceptual framework. The linguis-

tic-based knowledge analysis ap-

preach described here offers a con-

ceptual approach wherein knowledge

in a subject area is analyzed as (1)

lexical, (2) syntactic, and (3) seman-

tic knowledge. Analysis of these three

separate components of knowledge

creates a domain “language” that

completely describes the knowledge

of a particular subject area in logical

detail. This “language” serves as a

knowledge model that can be readily

translated into a software implemen-

tation. The resulting knowledge-

based system is able to “converse” in

the language of its domain about par-

ticular types of problems. Many pre-

viously reported knowledge acquisi-

tion techniques are effective, to vary-

ing degrees, for acquiring lexical,

syntactic, and semantic knowledge.
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A major obstacle to the development of knowledge-based sys-
tems (KBS) is the expensive work of acquiring expertise from
various sources and encoding it into a computer representation
of that knowledge. Ideally, of course, computers should learn
from experience just as people do. That is, a human specialist
teaches a computer what is correct and the computer adjusts its
understanding” and behavior in order to be “smarter” (Michie
and Johnston 1985). We want to be able to show a computer
examples of things, be they statements of fact, pictures, sample
actions, etc. and have it, by a process of discovery, formulate
ideas that connect those examples, finding patterns within these
events and ideas (Langley and Carbonell 1984). Only in this
way can the bottleneck of encoding knowledge into knowledge
representation structures be overcome (Michie and Johnston
1985). Unfortunately, it will likely be some time before our “in-
telligent” creations are capable of learning in that manner. For
the present, we must be content to work closely, either directly
or indirectly, with those sources of expertise we desire to cap
ture.
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There seems to be general agreement among
KBS developers that knowledge acquisition (KA)
is critical to any system development project. Con-
sensus regarding the importance of knowledge ac-
quisition, however, is not generally reflected in the
level of effort committed to this task, nor to the ex-
tent that such activities are reported in the litera-
ture on KBS applications. Most reports of system
development only contain a very cursory presenta-
tion of KA activities, or none at all. Descriptions of
system design and architecture, programming tools,
and system operation constitute most of all the sys-
tem development efforts reported.

Some KA reports have appeared in the natural
resources literature. Gordon (1989) provides an
overview of KA methods, in general. Hoffman
(1987) also reviews a number of KA methods, but
within the context of different problem-solving tasks
and the data required by them. Windon and Massey
(199 1) describe the use of unstructured interviews,
structured interviews, and protocol analysis, while
Evanson (1988) presents techniques and guidelines
for the interview process. Others have reported on
individual techniques, such as question probes (Gor-
don and Gill 1989), multi-expert elicitation using
a modified Delphi procedure (Schmoldt and
Bradshaw 1988), hypothetical test cases (Senjen
1988), multi-expert elicitation using questionnaires
(Schmoldt and Peterson 1991), dual expert elicita-
tion (Finkelstein and Enksson 1994), graph-based
elicitation of suitability factors (Nevo et al. 1990),
and multiple-expert elicitation within a blackboard
architecture (Clarke et al. 1990). Still others have
provided some details of knowledge acquisition
applied to specific system development efforts
(Bridges et al. 1995, DeMeers 1989, Downing and
Bartos 1991, Ekblad et al. 1991, Goforth and Floris

1991, Haas 1992, O’Hara et al. 1990, Rust 1988).
Nevertheless, the number of reports about knowl-
edge acquisition efforts and techniques represents
only a small fraction of the KBS projects reported.

Many natural resources domains present unique
sets of problems with respect to acquiring existing
expertise. Despite their uniqueness, however, they
also share some commonalties that can be exploited
for successful knowledge acquisition. Sharing KA
experiences through more extensive and compre-
hensive communications of KA activities can ben-
efit all those involved in development projects. This
report takes one step in that direction by providing
a theoretical approach called linguistic-based
knowledge analysis, and demonstrating how many
existing KA methods can be applied within this
theoretical framework.

Knowledge Acquisition
in Overview

Four primary sources of knowledge are: litera-
ture, human specialists, existing models (e.g., math-
ematical models, existing problem-solving proce-
dures), and examples (Sell 1985). Knowledge ac-
quisition refers to the process of locating, collect-

ing, organizing, synthesizing, and formalizing the
information, concepts, and strategies that pertain
to some subject area of interest. Although more tech-
nical definitions of knowledge can be made (q.v.,
Schmoldt and Rauscher 1994), in this paper, knowl-
edge is used generally to refer to any data, informa-
tion, or justified true belief (knowledge).

Figure 1 illustrates how the KA process fits into
KBS development. The goal of the system devel-
oper is to combine the knowledge that is scattered

Figure 1. Knowledge system development contains two subtasks. The first creates a knowledge model through a knowledge
acquisition process and the second produces a KBS through a knowledge translation/implementation process.
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throughout these four sources to produce a useful
knowledge system. To do this, he or she must com-
plete a KA task to create a knowledge model and
must also perform a knowledge translation task
(implementation) to encode that model into an ex-
ecutable computer program.

A knowledge model includes the knowledge and
rationale that must be applied to solve problems in
the subject domain (Schmoldt and Rauscher 1996).
An example knowledge model appears in Rauscher
et al. (1995). A knowledge model can be represented
in many ways, e.g., tables, diagrams, outlines, and

at many levels of detail, e.g., goals and subgoals
only, or case-specific reasoning. But eventually a
knowledge model must completely and specifically
outline the domain knowledge so that someone can
apply knowledge representation methods and search
procedures to create a knowledge-based system.

Methods of collecting, organizing, and formal-
izing knowledge vary substantially depending on
the knowledge source. For example, knowledge in
literature has already been collected and organized,
but someone must still synthesize and formalize it
so that it can be implemented in a KBS. Human
expert knowledge, on the other hand, is woven from
human experience and training into internal men-
tal models of how the world works and therefore
requires collection, organization, synthesis, and
formalization. Knowledge that exists in models is
already collected, organized, synthesized, and for-
malized, but it may be necessary to re-formalize it
or to integrate it with other knowledge. By care-
fully analyzing knowledge to create a domain “lan-
guage,” it becomes possible to combine knowledge
from several different sources in a cohesive and
coherent way.

Linguistic-Based Knowledge
Analysis

Linguistic-based knowledge analysis approaches
KA by categorizing knowledge as belonging to one
of three major types: lexical knowledge, syntactic
knowledge, and semantic knowledge. Much as a
linguist examines a language as lexicons connected
by syntax formed into semantic expressions, this
type of knowledge analysis creates a language for
the subject domain of interest. It does so by exam-
ining each type of knowledge separately. These three

types of knowledge also exhibit an implicit sequen-
tial ordering to their analysis—lexical analysis must
precede syntactic analysis, and syntactic analysis
must precede semantic analysis. Each is designed
to generate different features of a knowledge model.
Any KA effort should include an analysis of each
of these types of knowledge.

Identifying, labeling, and describing conceptual
and physical “objects” in a domain is the first step.
These “objects” are decision factors,  i.e., conditions,
variables, and domain entities that an expert talks
about when solving problems in the subject area.
Lexical knowledge analysis creates the lexicons that
make up the domain language, from which it be-
comes possible to subsequently discuss knowledge
structure (syntax) and tactical and strategic knowl-
edge (semantics). Syntactic knowledge analysis
identifies, labels, and describes the relationships
among the factors identified in lexical analysis.
Semantic knowledge analysis focuses on specific
combinations of factors (lexicons) and relationships
(syntax) to indicate plausible avenues of search to-
ward problem solutions. Semantic analysis adds
meaning to our lexicons and syntax to produce a
domain language, telling us when and how various
concepts and structures can be used to solve prob-
lems—to make domain “sense” out of application
problems. Because system development is an itera-
tive process of building, revising, and rebuilding,
knowledge analyses will be expanded continually
as new prototype versions are constructed.

Lexical Knowledge Analysis

During any preliminary KBS planning phase,
system developers should have characterized typi-
cal subject matter data and should have identified
the sources of those data (Schmoldt and Rauscher
1996). Now, as KA is begun, the details of the prob-
lem-solving process must be analyzed and described.
One of the key tasks to help understand a problem-
solving process is to analyze the factors that are
important for decision making; that is, what pieces
of information are used to solve a problem? These
will become the lexicons in the constructed domain
language.

First of all, any objects in the domain that will
be part of the decision-making process are given a
name. This may not be as trivial as it sounds. Some
abstract concepts are difficult to label (Benfur and
Furbee 1989). Most experts encounter substantial
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difficulty with the task of creating lists of decision
factors off the top of their heads. When presented
with a partial list a priori, however, it is much easier
for them to focus on important factors, refining those
factors already present on the list, and adding oth-
ers to it. Therefore, problem examples (actual or
hypothetical), books, manuals, etc. are often the
most helpful sources for enumerating decision fac-
tors and finding unique names for them. Schmoldt
(1987) used this approach to enumerate symptoms,
signs, and predisposing conditions of various red
pine insects and diseases. At least initially, objects
present on a decision-factors list should be reduced
to the most general terms possible. Introducing more
detail during this step forces the knowledge engi-
neer to consider how the factors are used in deci-
sion making and how they will be represented later
during implementation. Some implementation is-
sue may need to be addressed at this stage, but oth-
ers that surface cannot be resolved yet given the
current stage of model development.

Once a list has been created it may contain some
redundancies. As each object is labeled, it is given
a definition to distinguish it from all other terms.
While doing this, it is possible to identify terms
that duplicate others.

When a list of reasonably unique terms has been
created, each term is assigned a set of possible val-
ues that it may assume. Terms with numerical val-
ues may have some range of values that is reason-
able; non-numeric terms may have discrete values
such as high-medium-low or red-yellow-brown. In
situations where the entities are more complex than
single terms, i.e., each entity possesses several at-
tributes, then each of these attributes can be assigned
values. For example, we could describe facts about
trees within a forest in a number of ways. Each dif-
ferent attribute of a tree may have a separate label,
definition, and value, or, alternatively, if there are
many characteristics of a typical tree that the KBS
should be able to reason about, it would be more
elegant and efficient to regard each tree as distinct,
but each with a standard set of descriptors or at-
tributes. This begins to sound very much like a
frame-based representational structure; hence,
rather than just describing entities, we’ve begun to
consider how they will be used. Consequently, is-
sues of knowledge representation begin to surface.
Often different aspects of KBS design are intricately
interwoven and ideally must be considered in par-
allel.

4

One final aspect of the knowledge-term vocabu-
lary can be clarified during this listing process.
Some terms constitute the basic data that describe
a problem, for example, “tree diameters” or “for-
age species present.” These objects are often re-
ferred to as atomic factors because they are elemen-
tal (not composite, i.e., unable to be further reduced
to other terms) and observable. In general, all deci-
sion factors can be either observed directly (atomic)
or derived from atomic factors (hypotheses). Some
atomic factors are unusual in that they either can
be observed or, if the necessary observation cannot
be made, can also be derived from other atomic fac-
tors. For example, a tree can be observed as dead,
or alternatively its “death” state can be inferred from
the observations of dead shoots, buds, and needles.
When a factor is derived from other atomic factors,
it is often known with much less certainty than if it
has been directly observed.

Factors, that represent collections of atomic facts
in a conceptual manner are often called hypotheses.
Hypotheses represent higher-level concepts that
must be inferred and cannot be observed directly,
e.g., “moisture stress,” “stand stocking level,” or
“germination condition.” Hypotheses and their for-
mation are often very important in the problem-
solving process. Hypotheses—sometimes also called
intermediate factors — often serve to organize and
consolidate information represented by atomic fac-
tors and other lower-level hypotheses into a solu-
tion-building and reasoning process.

At this stage of lexical analysis, it may be diffi-
cult to define a possible range of values for some of
the intermediate hypotheses. Possible values for
intermediate hypotheses are often dependent on how
particular factors combine to infer these hypoth-
eses. Consequently. some lexical knowledge analy-
sis may need to be completed later after some knowl-
edge structure (syntax) has been imposed on these
factors and hypotheses.

Syntactic Knowledge Analysis

A list of terms without any structure conveys
little knowledge about a domain. Just as words that
don’t adhere to any grammatical rules (syntax) re-
sult in poorly formed sentences, so too knowledge
terms without any structure make it difficult to rep-
resent complex ideas. The second important aspect
of knowledge analysis is the understanding of rela-
tionships among decision factors. Syntactic knowl-
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edge expands the number and types of concepts that
can be represented, because it is possible to com-
bine individual factors in different ways. Then
knowledge begins to take on an aspect of depth,
rather than the one-dimensional nature of knowl-
edge terms.

Structure specification requires two properties:
(1) a description of the relationship, i.e., type, and
(2) the strength of the relationship, e.g., proximity
between two terms. Relationship type is most im-
portant; strength becomes important when it is nec-
essary to make finer judgments based upon a speci-
fied relationship. For example, two different insects
that damage tree roots may both girdle large roots,
which is very important descriptive information
relating particular insects with tree symptoms. One
of these insects, however, may girdle large roots
more frequently or during certain times of the year.
This additional information further describes the
insect/symptom relationship by qualifying the as-
sociation. The distinction between relationship type
and relationship strength implies that for KBS de-
velopment, type structures should be defined first
and, if necessary, discriminate terms and their us-
age in decision making on the basis of strength of
association or conceptual proximity.

Because relationships among several terms can
sometimes indicate a new, additional concept (an
intermediate hypothesis), structure analysis may
help illuminate these aggregate concepts to fill in
any omissions remaining from the lexical analysis
stage. All knowledge pieces are now present for an
analysis of semantic knowledge, the next step.

Semantic Knowledge Analysis

The third, and probably most difficult, aspect of
knowledge analysis is the elicitation of problem-
solving (tactical and strategic) knowledge. Elicit-
ing and applying semantic knowledge to the knowl-
edge acquired in lexical and syntactic analyses is at
least as important as those earlier types of knowl-
edge. Semantic knowledge is the applicative com-
ponent of knowledge; that is, it tells us how to ex-
ercise our static—factor and structure—knowledge
to make it work for us in solving problems.

Semantic knowledge typically includes a num-
ber of aspects. It can specify: (1) how to combine
various pieces of static knowledge for reasoning;
(2) when to use particular pieces of static knowl-

edge; (3) what possible solutions or goals to pursue
in what order; and (4) what type of search to con-
duct, e.g., certain rules sets may be evaluated in a
particular order or a certain type of control strategy
or inference method may be selected. The first use
is tactical knowledge; i.e., it tells us what to do given
those pieces of static knowledge. The other three
uses are strategic knowledge in that they tell us how
to apply our other knowledge (which may include
the application of tactical knowledge). There may
be other applications of semantic knowledge besides
these, but they all function similarly in that they
orchestrate how solutions are searched for, selected,
and evaluated.

Semantic analysis seems difficult because an
expert often has a better understanding of what
knowledge is used for problem solving rather than
how it is used. It is often quite readily apparent what
specific pieces of knowledge are applied to a prob-
lem. To understand how that knowledge is actually
used requires that an expert introspect about inter-
nal thought processes or retrospect about previously
solved problems—activities with which most people
have great difficulty. Although a large portion of
factor and structural knowledge resides in the pub-
lic arena, most problem-solving (semantic) knowl-
edge is private to each individual specialist. Con-
sequently, most acquisition methods for problem-
solving knowledge acquisition employ indirect ap-
proaches to infer underlying strategies and tactics.
Strategies surface from observed or proposed prob-
lem-solving behavior, possibly supplemented with
explanatory discourse.

The following rule from a rule-based knowledge
representation (Table 1) illustrates these different
types of knowledge:

IF percent_slope > 20

AND percent_slope < 80

AND burn_pattern = spotty

AND percent_area_burned > 40

THEN erodibility = moderate

Lexical knowledge analysis produces the various
terms and the potential values that one can use to
reason in the problem domain, e.g., the factors,
percent_slope and burn_pattern, and their ranges
of values. Syntactic knowledge analysis indicates
that percen t_ s lope ,  burn_pa t t e rn ,  a n d
percent_area_burned are related in a causal way to
post-fire erodibility. Therefore, a rule relating these
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factors will be useful for predicting erodibility. Se-
mantic knowledge analysis indicates how those fac-
tors are related and what their relationship indi-
cates about erodibility (tactical knowledge). That
is, in this case, the conjunction of particular factor-
value pairs implies a particular prediction for erod-
ibility. Therefore, semantic knowledge provides
applicative specifics for the lexical and syntactic
knowledge. Other forms of knowledge representa-
tion will have slightly different examples for the
different knowledge

Related Terminology

It is useful to examine how linguistic-based
knowledge analysis compares with the varied (and

Table 1. Each row of a knowledge table contains a set of
values for each of the independent factors and a corresponding
value for the dependent factor. This table format allows one to
code rules directly from the entries of the table.

Percent Riparian
Percent Slope       Burn Pattern Area Burned Erodibility

0 - 20 ? ? low

20 - 80 mosaic ? moderate

> 80 extensive ? high

? spotty 0 - 40 low

20 - 80 spotty > 40 moderate

> 80 mosaic > 20 high

> 80 mosaic 0 - 20 moderate

20 - 80 extensive 0 - 40 moderate

20 - 80 extensive > 40 high

Table 2. Previous knowledge-type terminology can be related to the
three types of knowledge described in linguistic-based knowledge
analysis. Categorization of knowledge acquisition methods within
knowledge analysis appears in Table 4.

Lexical Knowledge       Syntactic Knowledge Semantic Knowledge

Facts

declarative knowledge

“deep” knowledge (first principles)

“public” knowledgea

“textbook” knowledgea

properties/attributes

problem-specific knowledge

explanatory knowledge

heuristics

procedural knowledge

“surface” knowledge (compiled)

“private” knowledge

experiential knowledge

methods/procedures

problem-solving knowledge

deductive knowledge
a In some cases this may also include semantic knowledge.

6

often confusing) body of terminology introduced
elsewhere. Table 2 identifies some of the relation-
ships between lexical, syntactic, and semantic
knowledge and other authors’ descriptions. Most
other delineations distinguish only between seman-
tic knowledge and “the rest” (often called “declara-
tive”). Knowledge-analysis terminology goes one
step further by discriminating lexicons and the re-
lationships between lexicons (syntax). While this
may seem dubious from a taxonomic standpoint,
this distinction helps guide the acquisition of knowl-
edge because many KA methods may elicit specifi-
cally one or the other type of knowledge. Then,
rather than just acquiring knowledge in a domain,
the knowledge engineer explicitly elicits certain
types of knowledge (using type-specific methods)
that fulfill specific epistemological needs. This re-
sults in a more deliberate and rigorous knowledge
acquisition process.

Knowledge Acquisition Methods

Most of the KA techniques mentioned in the
following pages aim to systematize an expert’s
knowledge into a form that is universal and, hence,
less anecdotal. Anecdotal knowledge is often lim-
ited in application to situations that are very simi-
lar to the prior experiences that produced that
knowledge. On the other hand, universal knowl-
edge is more general and can be applied to a broader
range of problems, many of which might only be
vaguely similar to an expert’s original experiences.

Certain acquisition methods do a better job of
eliciting and organizing particular types of knowl-
edge. Because the purpose here is to show how dif-
ferent KA methods apply to knowledge analysis,
interested readers are urged to seek out the respec-
tive authorities listed in the references for additional
details about particular KA methods. Figure 2 de-
picts a taxonomy of the various methods presented
in the following sections.

Unstructured Interviews

Unstructured interviews are characterized
largely by a lack of organization. A knowledge en-
gineer (interviewer) and expert sit down and the
expert responds to questions posed by the inter-
viewer. Questions follow no preset or designed for-
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mat and topics are pursued in whatever order or at
whatever length seems best to the knowledge engi-
neer. Successive interviews tend to expand on top-
ics covered in prior sessions. Unstructured inter-
views often become the primary method of elicita-
tion employed to develop a quick prototype for a
feasibility study.

These types of interviews maybe useful during
initial stages of KA. Their lack of structure permits
a sort of free association dialogue that may illumi-
nate many of the major issues that are important,
but they also have some drawbacks. They are by
nature unstructured and, hence, may be very ineffi-
cient at collecting knowledge because of redundan-
ties and omissions. To work effectively, the inter-
viewer must be a very skilled communicator and
have an ability to identify key issues through inci-
sive questioning. This level of interviewer talent
implies, instead, some unconscious systematic meth-
odology by the interviewer, which means that he or
she may, in essence, be conducting a structured in-
terview.

Because of the broad nature of unstructured in-
terviews, it is possible to elicit lexical, syntactic,
and semantic knowledge. The loose structure of this
technique, however, makes it difficult for the knowl-
edge engineer to know how completely each of the
three types of knowledge has been acquired. Ex-
cept as an ice-breaker technique, unstructured in-
terviews cannot be strongly recommended as a valu-
able or effective elicitation method.

Structured Interviews

Within the general realm of structured inter-
views, a large number of methods may be utilized
(Gordon 1989). A fundamental intent of these meth-
ods is to provide the expert with guidance for his or
her responses, thereby increasing interview effi-
ciency. Explicit guidance allows an expert to focus
on the subject matter rather than on how responses
should be formatted. The following paragraphs
briefly describe a number of these techniques.

Free Association

Anderson (1983) proposed a model of human
memory called spreading activation theory. This
theory proposes that whenever one thinks of a par-
ticular concept, all concepts that are closely associ-
ated with that initial concept can very easily be re-
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called (activated). On the basis of this theory,
Mitchell (1987) suggests a free association KA tech-
nique. Various key concepts in the subject area are
posed to an expert one at a time and he or she is
asked to respond with other concepts that are in
any way related to each of them. It then becomes
possible for the knowledge engineer to construct a
matrix or graphical road map of terms/concepts in
the subject area.

An example of such a terminology graph ap-
pears in Figure 3. Three defoliators of red pine are
linked with terms that are related to these insects.
The knowledge engineer might ask an expert to
respond with all pest diagnosis terms that are re-
lated to these three insects. This method elicits not
only concepts that are part of the general theory of
a subject area, but also those things that are idio-
syncratic and, hence, private to an expert’s knowl-
edge (Mitchell 1987).

Obviously, free association generates decision
factors, but it also identifies which ones are related
to which other ones. Free association does not, how-

ever, elicit either the type of relationship (which is
very important) or how closely pairs of factors are
related so syntactic knowledge is only partially un-
covered.

Psychological Scaling

Results from the use of free association could be
subsequently enhanced by one of several psycho-
logical scaling techniques. Cooke and McDonald
(1987) discuss a number of scaling methods. Pro-
ponents of scaling methods claim that in addition
to associations among concepts in memory there
also exist strengths of association. These strengths
have some relation to cognitive proximity. So the
stronger an association is, the closer, or more re-
lated, two concepts are. Whereas free association
can provide a graph or matrix of all concepts and
whether they are related, scaling methods go one
step further and require that the relationships be
assigned some value from a numerical scale to in-
dicate relatedness. This association matrix (or dis-

Figure 3. Free association by a subject matter expert can identify many of the important concepts within his or her knowledge
base. Associations among these concepts can then be represented graphically or in a tabular manner using a matrix. RPS,
EPS, and RHPS refer to red pine sawfly, European pine sawfly, and red-headed pine sawfly, respectively.
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tance matrix) can then be transformed into a spa-
tial representation (using multidimensional scaling,
Shepard 1962), a hierarchical representation (us-
ing cluster analysis, Johnson 1967), or a network
representation (e.g., Cooke and McDonald 1987)
of an expert’s knowledge in a subject area. The
graph in Figure 3 can be converted into a matrix
with numerical values that represent closeness (Fig-
ure 4). This representational transformation accen-
tuates any lexical analysis information and also elu-
cidates knowledge structure.

Anthropological Methods

In addition to psychology research, a number of
useful elicitation techniques have also been devel-
oped in anthropology (Benfur and Furbee 1989).
To understand the language and thought patterns
of vastly dissimilar cultures, anthropologists have
been forced to develop numerous methods to de-
scribe the acquisition of personal/cultural knowl-
edge—knowledge that is quite difficult for indig-
enous peoples to impart to others from outside their
particular culture. Such cultural roadblocks are
analogous to the situation of a domain expert and
his or her subject matter specialty, which can also
be viewed as a culture of sorts. Many of these meth-
ods are detailed in a book by Brokenshaw et al.
(1980).

Sorting. One technique, referred to as sorting,
uses a stack of cards, each with a term/concept from
the domain written on it. The process of generating
these terms constitutes factor knowledge analysis.
An expert is instructed to sort the cards into differ-
ent piles using whatever criteria seem appropriate.
Following a sort, the expert is asked to provide a
verbal description of the sort criteria used. When
the cards contain only atomic decision factors and
intermediate hypotheses, then the subject matter
expert can group cards to indicate composite terms,
i.e., additional intermediate hypotheses, or can
group cards based on concept proximity. In this
manner, some lexical knowledge analysis occurs
after the original cards have been created, but in
most cases the act of sorting produces syntactic
knowledge only. When the cards contain different
possible solutions only and no intermediate or
atomic factors, this method works very similarly to
the repertory grid technique (see below). By orga-
nizing concepts into “similar” stacks using differ-
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ent sorting criteria on each pass, the expert is es-
sentially performing a psychological scaling exer-
cise identical to that described above (except per-
haps more interactive in this case). With each pass
the expert is scaling the concepts along a different
dimension.

Twenty Questions. Twenty questions is a game
familiar to most readers. The knowledge engineer
collects several task scenarios prior to the interview.
Then, during the interview, the expert is instructed
to ask questions about a particular task much like
would transpire in an actual problem-solving situ-
ation. The expert also supplies rationale for asking
each question. Our defoliator example from above
is used to illustrate the 20 questions technique in
the dialog excerpt of Figure 5.

The questions that the expert asks and the ra-
tionale provided for that questioning can elicit de-

green larvae

yellow larvae

red-headed

new/old foliage

old foliage

entire needle

branch flagging

grey-green larvae

bark consumed

3/4 needle consumed

Figure 4. By creating a matrix of pairwise relatedness values (distances),
one can extend the graphical representation in Figure 3 produced by
free association. Ten concepts were selected from the free-association
graph and values (0-9) have been entered for two rows of the matrix.
Because the matrix is symmetrical, it can be displayed as upper or lower
triangular Distances between concepts can be used to calculate clusters
of similar concepts.
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Where is the stand located? ( Certain insects are limited to particular
geographic areas): Portage county

How large are the frees? ( Some insects only affect trees of a certain
height.): 25 ft

What type of damage has occurred? (Gross symptoms can indicate
certain classes of pests.): Defoliation

Are new needles or old needles or both affected? (Different
defoliators consume either old needles or both new and old): New

When did defoliation occur? (The timing of defoliation can be very
diagnostic): June

Are larvae present. if so what color are they? ( A good larval
description can identify a particular defoliator absolutely): No

Figure 5. When example test cases are available for knowledge
acquisition, a subject matter expert can be asked to solve particular
cases by having the expert ask probing questions and provide a
rationale for each such question. This is often referred to as the 20
questions technique, similar to the game of the same name.

cision factors, their relationships, and how those
factors are used in problem solving. Therefore, this
technique is able to elicit all three types of knowl-
edge. While the 20-question format is very natural
for the expert, the knowledge engineer is forced to
record session dialog and analyze the transcripts
later for knowledge content.

Modus-Ponens Sorting. In modus ponens sort-
ing—referred to as a “structured interview” by

Schweickert et al. (1987)—an expert is asked to
list factors important to making a decision in the
subject area and also to list all possible outcomes
(final decisions). Then an expert must connect, in
the form of if-then rules, factors to each other, out-
comes to each other, and factors to outcomes. This
is a sorting method based on if-then relationships,
hence the use of the term modus ponens sorting.
This technique includes lexical analysis (lists of
terms are created), syntactic analysis (factors are
linked to each other), and semantic analysis (fac-
tors are linked to outcomes, i.e., decisions, via tac-
tical rules).

If the number of factors pertinent to each solu-
tion is small, it may be possible for the knowledge
engineer to construct all “reasonable” combinations
of factors for each solution and present these to an
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expert for critiquing; Schmoldt (1987) used this
method. When Schweickert et al. (1987) compared
sorting, 20 questions, and modus ponens sorting
for producing if-then rules, they found modus
ponens sorting and 20 questions superior to sort-
ing. Their sorting method, however, was not for-
mulated to explicitly create if-then rules as part of
the interview process; hence, it exhibited a poor
showing in their comparison.

Knowledge Diagraming

Graphing domain concepts and the relationships
between those concepts, as revealed by an expert,
can be a useful visual aid. This knowledge diagram
creates a sort of road map of an individual’s cogni-
tive structures. Then, in subsequent interviews, the
interviewer and expert have a record of where they
have been and what topics may need to be expanded
further. Figure 3 can be expanded into a knowl-
edge diagram by adding connecting phrases to the
links and by expanding and grouping various con-
cepts (Figure 6). For example, the relationship be-
tween “larval colonies” and “defoliation” could in-
clude the connector <cause>, as in “larval colonies”
<cause> “defoliation.” Also, the different types of
needle consumption, e.g., “entire needle,” “¾ths of
needle,” “branch to branch,” might be grouped un-
der the concept “needle consumption.” Explicit la-
beling of terms and their relationships creates both
lexical and syntactic knowledge.

Knowledge diagraming has also been used
with question probes by Gordon and Gill (1989)
and Graesser and Clark (1985), and also by
Schmoldt and Bradshaw (1988) as part of multi-
expert elicitation. Actual diagram creation is highly
recommended even if the knowledge diagram is not
utilized in successive interview sessions. The ac-
tivity of creating a diagram helps the knowledge
engineer visualize and better understand the

domain’s knowledge structure.

Repertory Grid

The repertory grid technique originated with
Kelly (1955) and his theory of personal constructs.
This theory posits that each of us operates some-
what like a “personal scientist,” i.e., we attempt to
organize, predict, and control our own world by
categorizing and classifying our experiences. This
is similar to a scientist who develops and tests theo-
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Figure 6. A portion of the free-association graph of Figure 3 appears here with different concepts connected by labeled links.
This graph provides more structure and more detail than the free-association graph.

ries about the physical world. A repertory grid is a
clinical technique that Kelly developed to identify
and analyze personal constructs, i.e., mental mod-
els. Boose (1985, 1986) automated and applied this
technique to the acquisition of expert knowledge.
Boose’s process attempts to fill in a matrix, where
each column corresponds to an element that is to
be discriminated (i.e., final solutions), and each row
represents a personal construct (decision factor) that
differs across several of the column elements. Each
construct has a diametric description, e.g., short/
tall or good/bad. Then each column element (solu-
tion) can be assigned a value for each construct (de-
cision factor) that indicates the association between
it and each diametric construct.

Figure 7 contains part of a repertory grid for
our defoliator example. Each element receives a
score in the range 1-5 depending on how much of
the construct it possesses. Many of the constructs
for this example, present in Figures 3 and 6, do not
necessarily have a natural range of values, but rather
have discrete values, e.g., the location of the stand
or the description of the larvae. These types of con-
structs are not easily incorporated into the reper-
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tory grid and must be added to the knowledge rep-
resentation later.

The repertory grid has the nice advantage of
forcing an expert to create a tabular representation
of his or her internal concepts about a subject area.
Decision factors are enumerated and discrimina-
tion rules are created as the grid is constructed. Then
the grid can be used for syntactic analysis of knowl-
edge structure or for semantic analysis and actual
rule construction (Boose 1986). Boose (1986) notes,
however, that it is limited in application to declara-
tive types of knowledge (declarative knowledge, in
this case, includes tactical knowledge). Procedural,
strategic, and causal knowledge are difficult to rep-
resent with this technique.

Knowledge Matrices/Tables

A technique that is very similar to the repertory
grid is the use of knowledge matrices or, equiva-
lently, knowledge tables. Knowledge matrices/tables
allow the knowledge engineer to explicitly describe
the associations between a particular hypothesis and
all the factors upon which it depends. Various com-

11



Schmoldt: Linguistic-Based Knowledge Analysis

Figure 7. The repertory grid technique can effectively discriminate among a set of elements (solutions)
based on various bipolar constructs. All the solutions are scored for each construct on some arbitrary
scale, e.g., 1-5.

binations of values for the factors are associated with
particular values of the hypothesis. These associa-
tions can then be translated directly into if-then
rules, if desired.

Most hypotheses are established by the interac-
tion of several different factors. For example, a hy-
pothesis, Y, maybe inferred from the values of fac-
tors Xl, X2, and X3. Using the hypothesis and fac-
tors, a matrix can be constructed to ensure that the
correct relationships have been specified and that
all possible combinations of the factors have been
accounted for (Braun 1989). The entries in the
matrix represent the values of Y; the row and col-

umn headings correspond to particular values of
the X's.

Table 3 contains a more concrete example. Here
the hypothesis we are interested in is slope erod-
ibility of a tract of land following a wildfire. The
factors identified as influencing erodibility are per-
cent slope, percent of riparian area burned, and
the pattern of the burn in the watershed. This ma-
trix representation allows us to easily see what the
relationships among all pertinent factors and erod-
ibility are.

An equivalent, and possibly more useful, repre-
sentation of the knowledge matrix in Table 3 ap-

Table 3. A knowledge matrix creates an alternative representation to the knowledge table. This
knowledge matrix displays the relationships between three independent factors and their impact on a
dependent factor, erodibility.  The values, “low”, “moderate”, and “high” are possible erodibility
values.

Percent Riparian Area Burned

Erodibility

0 - 2 0
Slope 20-80

> 80

0 - 2 0
Slope 20-80

> 80

0 - 2 0
Slope 20-80

> 80

0-20 2 0 - 4 0 > 40

low
low
low

low
moderate
moderate

low
moderate

high

low
low
low

low
moderate

high

low
moderate

high

low
moderate
moderate

low
moderate

high

low
high
high

Burn Pattern

spotty

mosaic

extensive
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pears in Table 1. This knowledge table contains a
column for each of the independent factors (per-
cent slope, percent riparian area burned, and burn
pattern) and one for the dependent factor (erodibil-
ity). There is one row for each possible combina-
tion of values for the independent factors, where
the dependent factor entry for that row is the logi-
cal conjunction of the values for the independent
factors. Although it would be difficult to include
more than four factors in a knowledge matrix (one
on each side and top/bottom), in a knowledge table
there is no similar organizational dilemma because
each factor is contained in a separate column.

In this particular case, the total number of rows
needed would be 3 x 3 x 3 = 27. While this may
seem like a more verbose way to represent the same
contents as Table 3, it is really not that onerous.
For example, in Table 3, notice that when slope =
0-20%, erodibility is low regardless of the values
of the other two factors. Table 1 represents this
knowledge by using a “?” in the columns corre-
sponding to percent riparian vegetation burned and
burn pattern to indicate “we don’t care what the
values of those factors are, it’s unimportant.” There-
fore, this one row contains knowledge that would
otherwise be spread over nine rows (3 x 3). As a
result of this and other shortcuts, a total of nine
rows in Table 1 covers all 27 cases. The real advan-
tage of the representation in Table 1 is that if-then
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rules can immediately be written to correspond to
each row of the table. For the example above, we
could write the concise rule:

IF 0 ≤ percent_slope ≥ 20 THEN erodibility = low.

By specifying decision factors and the values of fac-
tors that imply values of other hypotheses, all three
types of knowledge are acquired and recorded.

Analytic Hierarchy Process

Another aid to the analysis of a decision pro-
cess is the analytic hierarchy process (AHP) devel-
oped by Saaty (1980). It allows persons with deci-
sion-making expertise to structure a complex prob-
lem in the form of a hierarchy. The process requires
an ability to enumerate all possible decisions, i.e.,
alternative solutions, a priori. Then criteria are es-
tablished to evaluate those decisions. Likewise, there
may also be criteria to evaluate each of the previ-
ous criteria. This forms a hierarchy (Figure 8).

At each level, pair-wise comparisons are made
regarding the relative likelihood, relative prefer-
ence, or the relative importance of each criterion
versus each of the other criteria at the same level.
For our example, erosion hazard rating, establish-
ment likelihood, political/social impacts, and down-
stream values would be compared in a pairwise

Figure 8. The analytic hierarchy process (AHP) dissects a decision process into a hierarchy of criteria, where each criterion
may have subordinate criteria. At each level of the hierarchy, pairwise comparisons are used to generate a priority value for
each of the criteria at each level. A finite and known set of decisions can then be compared by scoring each leaf node decision
with respect to preceding criteria and then multiplying those values by successive priority values between the leaf node and
the root node.
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manner. Similarly, runoff potential and soil cover
would be compared, as would on-site seed viability
and historic success, etc.

In the AHP, these comparisons can then be con-
verted into numbers that represent each criterion’s
contribution to the overall decision. At each of the
leaf nodes, a score is recorded by an expert for each
possible decision with respect to the criteria imme-
diately above that node. Suppose that, in our ex-
ample, the two possible decisions are seed or do
not seed. Then both of these decisions are scored
according to their impact on runoff potential and
soil cover (the two lowest-level criteria). The score
for each, seed and do not seed, is then multiplied
by the priority value for each of the criteria above,
runoff potential and soil cover. Each of these two
scores is then multiplied by the priority value for
the next higher level node, i.e., erosion hazard rat-
ing. A similar process proceeds from each set of
leaf nodes up to the root node, where the scores for
each possible decision are summed across the top-
level criteria. The process of combining and propa-
gating scores up through the hierarchy to the root
node results in an overall likelihood, preference, or
importance, score for both of our possible decisions,
seed or don’t seed.

For KA purposes, it would probably not be use-
ful to duplicate exactly this behavioral model of
decision making in a KBS. The AHP produces a
decision structure that is valid at one point in time
and for a particular instance. This general ana-
lytic process, however, does provide a great deal of
knowledge about how an expert might structure and
think about a class of problems. The primary ad-
vantage of this analytic method is that it provides a
systematic and detailed description of an expert’s
decision-making criteria and each criterion’s rela-
tive contribution in the decision process. Unless the
AHP that is developed is used as the actual deci-
sion model, the AHP does not elicit any general-
purpose semantic knowledge.

Several drawbacks to this approach are imme-
diately apparent. First, not all decision-making situ-
ations can be structured in a hierarchical manner.
Second, it is not clear what to do when certain cri-
teria are not known in an actual problem instance.
Third, priority values in the AHP are static; how-
ever, in many real-world situations the relative con-
tribution of different factors may vary over time or
with different users and their specific problems.

Questionnaires

Occasionally, it may be difficult to physically
meet with an expert or it may be necessary to ex-
tract very detailed and specific knowledge about
some topic. Questionnaires can be quite useful in
both circumstances (Olson and Rueter 1987,
Schmoldt and Peterson 1991). Also, when several
experts are to be interviewed, the time and effort of
the knowledge engineer can be reduced if question-
naires can be used in place of face-to-face meet-
ings. This situation was encountered with the KBS

development effort fo seeding recommendations
(Figure 8). The content of questionnaires may be
very specific and require only short answers or they
may be more general and intended to elicit longer
prose. Multiple-choice or short-answer questions
can often help an expert focus on the specific de-
tails that a questionnaire is designed to address. It
may also be desirable to allow an expert the flex-
ibility to add comments for explanation or empha-
sis. Schmoldt ( 1987) successfully used short-answer
questionnaires to verify and augment lists of fac-
tors related to pest diagnosis; these factors were
categorized as either predisposing conditions, symp-
toms, or signs. Using categories of lists helps an
expert narrow his or her attention to a specific task
with specific types of output. Schmoldt and Peterson
(1991) used tables and short-answer questionnaires
to elicit knowledge about air pollution impacts in
wilderness areas from a large group of scientists
and land managers. These questionnaires were com-
pleted in a workshop setting where: (1) question-
naires provided a focus for discussion and (2) their
presence ensured that participants were aware of
tasks to be completed in the time allotted. By using
other methods in conjunction with questionnaires,
it maybe possible to elicit semantic knowledge, but,
in general, only factors and their relationship are
acquired.

Protocol Extraction

Encouraging an expert to explicitly detail how
either typical or specific problems are solved can
elucidate many specifics of his or her decision-mak-
ing process. Explication of an expert’s problem-solv-
ing protocol identifies factors that are important,
relationships among them, hypotheses that can be
inferred, and strategies of how and when these fac-
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tors are applied. A number of different protocol
extraction methods have been utilized.

Goal Decomposition

Goal decomposition is one of the most basic
methods of formalizing problem-solving strategies.
An expert is asked to enumerate the steps to be fol-
lowed (subgoals) as a problem is solved. A particu-
lar problem scenario may be used as an example,
or general types of problems maybe discussed more
in an abstract manner. These subgoals can then be
used in recursive goal decomposition until the
subgoals become fairly simple and readily accom-
plished tasks. This approach may be used in com-
bination with knowledge diagraming or other
methods presented above.

Forward Scenario Simulation

Another method, forward scenario simulation
(Grover 1983), is almost identical to goal decom-
position but prompts an expert for additional infor-
mation, such as decision factors and explanations,
in addition to subgoals. It is referred to as a simula-
tion because an expert does not actually solve a prob-
lem scenario, but only describes how it might be
done (Gordon 1989). Forward scenario simulation
represents a very general protocol method because
it elicits both decision factors and problem-solving
strategies.

Verbal Protocol

In verbal protocol, an expert is asked to solve a
particular problem in the domain and to verbalize
his or her rationale at the same time. Hoffman
(1987) suggests the use of three different types of
tasks for verbal protocol: (1) typical and familiar
tasks, (2) limited information tasks, and (3) rare or
tough cases. Gordon (1989) mentions a variant of
typical verbal protocol, retrospective protocol, in
which the actual problem solving and explanation
portions of the protocol are performed separately.
That is, an expert first solves a particular problem
and then reflects on the methods and rationale used
for problem solving. The technique in the follow-
ing section also requires that an expert solve ex-
ample cases, but without any accompanying ex-
planatory rationale.
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Observed Problem Solving

An expert may work differently when he or she
is not required to justify problem-solving steps. To
avoid overly self-conscious and, hence, unnatural
decision-making situations, an expert maybe asked
to solve problems without providing explanations.
Observed problem solving may occur either in its
natural environment, i.e., on the job, or in an artifi-
cial situation. Different types of tasks, i.e., familiar
cases, limited information cases, and tough cases,
may also be used with this method. Because prob-
lem-solving steps are not made explicit by the ex-
pert when using this KA method, the knowledge
engineer must infer implicit strategies that are em-

1989).

Machine Learning

ployed to solve various types of problems (Gordon

Most of the extraction methods described in the
previous sections collect knowledge from experts.
But, as noted earlier, some knowledge also exists
in real-world examples. That is, much can be in-
ferred from prior situations and then applied to new
or similar circumstances. Machine learning meth-
ods are automated techniques for discerning pat-
terns in data sets. In the three methods presented
below, a decision procedure—e.g., decision tree or
decision function—results from learning.

Machine Induction

Machine induction methods attempt to discern
patterns present in collections of decision factors
and their corresponding solutions (e.g., Langley and
Carbonell 1984, Michalski et al. 1986). Many of
these programs attempt to induce rules from ex-
amples using an algorithm similar to the ID3 algo-
rithm of Quinlan (1983). This bottom-up approach
creates general and universal associations from spe-
cific problems and their attributes. The result is of-
ten a discriminating hierarchy similar to a decision
tree. Like empirical relationships derived using tra-
ditional statistical approaches (such as least-squares
regression), however, decision rules resulting from
machine induction are very sensitive to, and only
applicable to, the range of problems from which
they were developed. This implies that examples
used for learning must be selected very carefully
(Hart 1986). Julien et al. (1992) review a number
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of machine induction techniques and Jeffers (1991)
reviews of number of machine induction software
packages.

Clustering methods, on the other hand, do not
use any training set. They attempt to organize simi-
lar individuals into groups, or clusters, that are alike
in some (possibly more than one) way. By examin-
ing how individuals align themselves into clusters
and what attributes of individuals are important for
each cluster, it is possible to understand more about
the population of individuals. Often, individuals are
labeled as similar to other individuals if they are
close to each other with respect to some metric (e.g.,
Michalski and Stepp 1983). Others (e.g., Matthews
and Hearne 1991) have used nonmetric clustering,
where clusters are formed based on some charac-
teristic of the clusters and not on proximity among
individuals. These techniques have also been re-
ferred to as conceptual clustering because the at-
tributes used for clustering are not necessarily arith-
metic.

Artificial Neural Networks

Another approach to machine learning uses ar-
tificial neural network (ANN) structures to repre-
sent the association between decision factors and
possible solutions. The first description of the op-
eration of an ANN was probably given by Hebb
(1949). They were studied extensively in a theo-
retical fashion by Minsky and Papert (1969) and
received a thorough empirical treatment in
Rumelhart and McClelland (1986) and McClelland
and Rumelhart (1986). An ANN consists of one or
more layers of simple processing units. Each pro-
cessing unit is connected to one or more processing
units or input variables or output solutions. The
output of any processing unit is determined by the
inputs of its connections and the activation func-
tion that it uses to combine inputs. A network is
then exposed to a variety of paired input and output
combinations that constitute a training set. If net-
work output does not agree with expected output
from the training set pair, a learning algorithm
modifies the strength values associated with pro-
cessing unit connections. Different network archi-
tectures, different learning algorithms, and differ-
ent activation functions cause networks to exhibit
vastly different properties.

Machine induction and ANNs possess several
similar characteristics. Both are dependent on the

quality and quantity of examples used for system
construction. Each requires that decision factors are
selected a priori; this may necessitate the use of other
KA methods initially. Certain decision factors may
be eliminated later, however, if they are found to be
redundant or ineffective. Syntactic knowledge, rep-
resented as relationships among concepts in the
domain, remains hidden in the discrimination tree
or in processing unit connections. Semantic knowl-
edge can possibly be inferred from a discrimina-
tion tree but it has no direct representation in a neu-
ral network. Nevertheless. there have been some
efforts, e.g., Narazaki et al. (1996), tO generate clas-
sification rules from ANNs. Machine learning can
often produce very applicative systems, but they are
opaque with respect to providing explicit accounts
of domain knowledge.

Genetic Algorithms

A third machine learning approach is genetic
algorithms (Goldberg 1989). This technique bor-
rows ideas from traditional biological evolution
theory. In a population of individuals, those with
the “best” score, along some measure of usefulness
or fitness, survive and reproduce. Offspring are bet-
ter adapted because they contain the best attributes
of their parents. These new genotypes possess com-
binations of attributes that were not previously
present in any other individuals. In this sense, the
genetic system has produced, or “learned,” a new
and unique individual.

When applied to a machine learning task, ge-
netic algorithms are generally constructed as clas-
sifier systems. That is, a genetic-based machine
learning system attempts to create a set of classifi-
ers that are useful for describing a particular data
set. A genetic algorithm begins with a set (popula-
tion) of candidate classifiers. In most implementa-
tions of genetic algorithms for machine learning,
classifiers are represented by strings of 0’s and 1’s.
Classifiers that are useful, i.e., successfully describe
some aspect of the data set, receive a payoff that
determines how well they perform in their envi-
ronment in the future. Members of this classifier
population reproduce in the next cycle proportional
to their “usefulness” score. After reproduction, pat-
terns of 0’s and 1’s in members of the new popula-
tion cross over, i.e., two population members con-
tribute a portion of their pattern to produce a new
member (classifier) of the population. In this way,
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new classifiers are created from the best classifiers
of the previous population. A random mutation step
is also applied to ensure that populations do not
stagnate (a random 0 or 1 is changed with a very
low frequency). Over several generations, popula-
tions produce individuals (classifiers) that become
more “useful” in describing a data set than indi-
viduals of previous populations.

Genetic-based machine learning can, therefore,
derive new classifiers that were not present in the
original set of classifiers (often a randomly gener-
ated set). As with the other two machine learning
methods, decision factors must be selected a priori.
Because input factors and the population of classi-
fiers are encoded as 0’s and 1’s, however, any syn-
tactic or semantic knowledge is completely ob-
scured.

Automated Tools

Various computer programs have been developed
to perform many of the interview tasks described
above, thereby relieving a knowledge engineer of
some of those chores. These automated KA tools,
such as ETS (Boose 1986), lead an expert through
various on-line exercises to identify decision fac-
tors, knowledge structures, and problem-solving
strategies. Other tools, such as AKT (walker et al.
1995) and NetWeaverl, lack a formal interviewing
facility, but provide for recording, organizing, and
executing knowledge bases. They can be viewed as
knowledge base processors, analogous in intent to
word processors. Some of these tools even create
an operational system directly from interviews.
Many rely on graphical aides to help an expert vi-
sualize his or her knowledge structures. Several such
tools are available commercially, but most have been
developed and are used in-house or represent aca-
demic research systems. Gordon (1989) provides a
brief survey of several of the tools available.

Summary and Discussion

Acquiring the necessary knowledge for KBS
development is a difficult task because of the ab-
stract and complex nature of knowledge, especially
private, human knowledge. Performing a good job
during this phase of system development is essen-
tial, however, to produce an adequate knowledge

model. This model will later be implemented as
computer code in a KBS. A poor job of KA will
produce a faulty knowledge model, which will, in
turn, result in a faulty KBS.

Linguistic-based knowledge analysis involves a
careful examination of the knowledge applied in a
problem domain and is intended to guide knowl-
edge acquisition. The knowledge analysis process
is analogous to lexical, syntactic, and semantic
analysis of natural or formal languages. The con-
ceptual basis provided by the knowledge analysis
framework can help a knowledge engineer system-
atically acquire and understand expertise in an un-
familiar domain. Because knowledge analysis sub-
divides the KA task into smaller and logically con-
nected subtasks, it allows the knowledge engineer
to select various KA methods that are appropriate
to the separate steps, and still to combine their re-
sults to develop a knowledge model. Used in com-
bination with a variety of KA methods, knowledge
analysis can increase the completeness and reliabil-
ity of the knowledge model created.

Knowledge acquisition methods have been de-
veloped in many different disciplines, such as deci-
sion theory, psychology, management science, com-
puter science, and anthropology. Each method has
its own strengths and weaknesses, and is variously
effective for acquiring certain types of knowledge.
Consequently, it is best to apply several different
methods to obtain a complete picture of any subject
area and to find effective methods for reasoning
about that knowledge.

From the descriptions of acquisition methods
above we can extrapolate and suggest some meth-
ods that may be particularly useful for each of the
three knowledge analysis steps. Table 4 summarizes
the application of particular acquisition methods to
the three components of a domain “language.”
Several techniques, such as free association, modus
ponens sorting, repertory grid, analytic hierarchy
process, questionnaires, knowledge tables/matrices,
and automated tools, specifically request decision
factor information. Others, such as 20 questions,
unstructured interviews, protocol extraction meth-
ods, and machine learning methods, often extract
decision factors as part of their acquisition process.
Literature and examples are also very useful for
identifying factors and should be considered as a
first source. Because a knowledge engineer will
want to review the available literature for his or her
own background education in the subject area, ini-
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tial acquisition via literature can occur simulta-
neously with preparation for interview sessions.

Most of the acquisition methods that elicit syn-
tactic knowledge do so on the basis of relationship
type. Sorting, modus ponens sorting, knowledge
diagraming, repertory grid, questionnaires, and
automated tools usually attempt to explicitly iden-
tify and label relationship types. Using a hierarchi-
cal structure and priority values, the analytic hier-
archy process elicits both the type and the strength
of relationship knowledge. In the process of com-
pleting knowledge matrices/tables it becomes nec-
essary to stipulate explicitly which decision factors
are related to which hypotheses and what combina-
tions of factors are associated in particular ways.
Unstructured interviews, protocol extraction meth-
ods, and 20 questions illuminate structure less di-
rectly and often less completely. Psychological scal-
ing methods, however, highlight the proximity be-
tween terms, rather than actual types of relation-
ships that exist.

Several acquisition methods utilize a problem-
solving scenario. To facilitate problem solving, an
expert is asked to consider either a generic example
problem or a specific problem instance. While solv-
ing a problem, the expert provides explanations, as
in 20 questions and protocol extraction. Retrospec-
tive protocol splits the activities of problem solving

Table 4. Many different knowledge acquisition methods
can be applied to each of the three components of
linguistic-based knowledge analysis. Several methods can
be applied to all three aspects of knowledge analysis.

Type of Knowledge
Acquisition Method Lexical Syntactic Semantic
Unstructured Interview × × ×
Free Association × ×
Psychological Scaling ×
Sorting × ×
20 Questions × × ×
Modus Ponens Sorting × × ×
Knowledge Diagramming × ×
Repertory Grid × ×
Knowledge Matrices × × ×
AHP × ×
Questionnaires × ×
Protocol Extraction’ × × ×
Goal Decomposition ×
Problem Solving ×
Machine Learning × ×
Automated Tools × × ×
a Includes forward scenario simulation and verbal protocol.

and exposition into two separate tasks. Problem
solving and forward scenario simulation eliminate
exposition altogether, where in the former an ex-
pert solves a problem and in the latter only prob-
lem-solving steps are elicited. When using knowl-
edge matrices/tables, it may be useful to have the
expert consider past problem-solving scenarios to
fill in entries in the matrix. Goal decomposition
also extracts various components of solving a prob-
lem without actually asking an expert to solve one.
In the analytic hierarchy process, criteria and their
priorities explicitly specified in a hierarchical struc-
ture precisely define a decision-making strategy; in
a sense, the AHP is the strategy. Induction from
examples empirically creates tactical semantic
knowledge from previously solved problems. Se-
mantic knowledge may crystallize during modus
ponens sorting, unstructured interviews, knowledge
diagraming, and automated tool usage, but it re-
sults from verbalization rather than from perfor-
mance.

From Table 4 it is apparent that several KA
methods can be applied to all three components of
a knowledge analysis. Although certain methods
are more effective for particular analyses, the knowl-
edge engineer can carefully apply one of several
methods and, in so doing, extract all three forms of
knowledge to some extent.

While reports of KBS development activities
often acknowledge the difficult task of knowledge
acquisition, in many cases less effort has been ex-
pended to share KA ideas and to suggest new and
effective approaches to the task. The level of activ-
ity devoted to understanding how to effectively cap-
ture human knowledge has lagged behind efforts
in hardware and software implementation. This
knowledge analysis approach provides a framework
to organize existing KA methods and outlines a
theoretical basis for developing new ideas and tech-
niques. By developing lexicons, syntax, and seman-
tics for a domain, it becomes possible to converse
unambiguously and knowledgeably about that sub-
ject area.
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